Home » Publication » 26267

Dettaglio pubblicazione

2022, Advances in Neural Information Processing Systems, Pages - (volume: 35)

Learning on the Edge: Online Learning with Stochastic Feedback Graphs (04b Atto di convegno in volume)

Esposito E., van der Hoeven D., Fusco F., Cesa-Bianchi N.

The framework of feedback graphs is a generalization of sequential decision-making with bandit or full information feedback. In this work, we study an extension where the directed feedback graph is stochastic, following a distribution similar to the classical Erdős-Rényi model. Specifically, in each round every edge in the graph is either realized or not with a distinct probability for each edge. We prove nearly optimal regret bounds of order (Equation presented) (ignoring logarithmic factors), where αε and δε are graph-theoretic quantities measured on the support of the stochastic feedback graph G with edge probabilities thresholded at ε. Our result, which holds without any preliminary knowledge about G, requires the learner to observe only the realized out-neighborhood of the chosen action. When the learner is allowed to observe the realization of the entire graph (but only the losses in the out-neighborhood of the chosen action), we derive a more efficient algorithm featuring a dependence on weighted versions of the independence and weak domination numbers that exhibits improved bounds for some special cases.
Gruppo di ricerca: Algorithms and Data Science
keywords
© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma